Direct measurement of the 3-dimensional DNA lesion distribution induced by energetic charged particles in a mouse model tissue.
نویسندگان
چکیده
Charged particles are increasingly used in cancer radiotherapy and contribute significantly to the natural radiation risk. The difference in the biological effects of high-energy charged particles compared with X-rays or γ-rays is determined largely by the spatial distribution of their energy deposition events. Part of the energy is deposited in a densely ionizing manner in the inner part of the track, with the remainder spread out more sparsely over the outer track region. Our knowledge about the dose distribution is derived solely from modeling approaches and physical measurements in inorganic material. Here we exploited the exceptional sensitivity of γH2AX foci technology and quantified the spatial distribution of DNA lesions induced by charged particles in a mouse model tissue. We observed that charged particles damage tissue nonhomogenously, with single cells receiving high doses and many other cells exposed to isolated damage resulting from high-energy secondary electrons. Using calibration experiments, we transformed the 3D lesion distribution into a dose distribution and compared it with predictions from modeling approaches. We obtained a radial dose distribution with sub-micrometer resolution that decreased with increasing distance to the particle path following a 1/r2 dependency. The analysis further revealed the existence of a background dose at larger distances from the particle path arising from overlapping dose deposition events from independent particles. Our study provides, to our knowledge, the first quantification of the spatial dose distribution of charged particles in biologically relevant material, and will serve as a benchmark for biophysical models that predict the biological effects of these particles.
منابع مشابه
Microdosimetry study of a multicellular model with mono-energetic electrons using Geant4-DNA simulation toolkit
Introduction: The goal of any type of radiation therapy in the treatment of tumors, in addition to destroying cancer cells, is to minimizing radiation to nearby healthy cells and thus reducing side damages. For this purpose, targeted radiation therapy (TRT) is more effective in treating of single cells or small cluster of cells. The main factor in the success of this method is...
متن کاملI-19: The Selective Vitamin D Receptor Agonist Elocalcitol Reduces Development of Endometriosis and Formation of Peritoneal Adhesion in A Mouse Model
Background: Endometriosis is a chronic disorder characterized by the presence of endometrial tissue outside the uterus. Endometrial cells from retrograde menstruation implant on peritoneal surfaces and elicit an inflammatory response, associated with angiogenesis, fibrosis, neuronal infiltration, and anatomical distortion. Affecting an estimated 176 million women worldwide, the condition is sti...
متن کاملThe biological effects induced by high-charged and energy particles and its application in cancer therapy
The radiobiological effects of high atomic number and energy (HZE particles) ion beams are of interest for radioprotection in space and tumor radiotherapy. Space radiation mainly consists of heavy charged particles from protons to iron ions, which is distinct from common terrestrial forms of radiation. HZE particles pose a significant cancer risk to astronauts on prolonged space missions. With ...
متن کاملModeling the distribution of deposited energy by alpha particles from Radon 223 decay and its effect on DNA
The ionizing radiations, through physical and chemical processes, lead to simple and complex single- and double- strand breaks, as well as base lesions to the DNA. In this study, taking into account all the physical and chemical processes involved in the interaction of ionizing radiation with matter, the initial damage induced to DNA was evaluated for 5.7 MeV alpha-rays from Radon 223 isotope....
متن کاملتوزیع چندگانگی ذرات باردار در نابودی +e-e در انرژی مرکز جرم GeV54-57 و مقیاس KNO
In this paper, we investigate the multiplicity of charged particles in e+ e– annihilation by using different models. To achieve this we first fit the multiplicity distribution of charged particles in the energy range of 54-57 GeV by using both the Poisson distribution and KNO scaling, then we compare these results with multiplicity distribution at the lower energies. This comparison shows that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 40 شماره
صفحات -
تاریخ انتشار 2015